Technical University of Berlin
The partner in the project is a group of prof. Stephan Reitzenstein:
Optoelectronics and Quantum Devices (Institute of Solid State Physics, Faculty II: Mathematics and Natural Sciences) from Technical University of Berlin
(TU Berlin). Technical University of Berlin
is one of the top 100 universities worldwide with many years of experience in semiconductor nanostructures dating back to development of the
first QD-based lasers
.
The group of prof. Reitzenstein combines unique
3D in-situ deterministic
technology for nanostructures fabrication
(more informations:
here
and here) with advanced spectroscopy tools heading towards fundamental research on
cavity quantum electrodynamics, nonlinear dynamics or external control of quantum systems as well as realization of
practical quantum
devices
like micro- and nanolasers, ultra-bright single- and indistinguishable-photon sources and hybrid quantum systems with
a long-term goal of realizing a quantum repeater...
The group holds
several records in terms of emission rate for optically- and electrically-pumped non-classical light
sources
as well as the first proof-of-principle for QD-based quantum key distribution
realized at the distance of 500 m (free space).
Wihtin the project the group from TU Berlin provides high-quality MOCVD-grown GaAs-based quantum dot (QD) structures
emitting in the telecom O‑band due to strain engineering by means of InGaAs strain reducing layer. QDs are embedded into a photonic mesa structure
for enhanced photon extraction efficiency and the bottom DBR section is included in the structure layout.
Plug&Play Fiber‐Coupled 73 kHz Single‐Photon Source Operating in the Telecom O‐Band Anna Musiał, Kinga Żołnacz, Nicole Srocka, Oleh Kravets, Jan Große, Jacek Olszewski, Krzysztof Poturaj, Grzegorz Wójcik, Paweł Mergo, Kamil Dybka, Mariusz Dyrkacz, Michał Dłubek, Kristian Lauritsen, Andreas Bülter, Philipp‐Immanuel Schneider, Lin Zschiedrich, Sven Burger, Sven Rodt, Wacław Urbańczyk, Grzegorz Sęk, and Stephan Reitzenstein, Adv. Quantum Technol., 3:2000018 (2020)
Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications, Kinga Żołnacz, Anna Musiał, Nicole Srocka, Jan Große, Maximilian J. Schlösinger, Philipp-Immanuel Schneider, Oleh Kravets, Monika Mikulicz, Jacek Olszewski, Krzysztof Poturaj, Grzegorz Wójcik, Paweł Mergo, Kamil Dybka, Mariusz Dyrkacz, Michał Dłubek, Sven Rodt, Sven Burger, Lin Zschiedrich, Grzegorz Sęk, Stephan Reitzenstein, and Wacław Urbańczyk, Opt. Express 27, 26772-26785 (2019)
Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths, Paweł Mrowiński, Anna Musiał, Krzysztof Gawarecki, Łukasz Dusanowski, Tobias Heuser, Nicole Srocka, David Quandt, André Strittmatter, Sven Rodt, Stephan Reitzenstein, and Grzegorz Sęk, Phys. Rev. B 100, 115310 (2019)
Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography, N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, AIP Advances 8, 085205 (2018)
Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot–microcavity system, C. Hopfmann, A. Carmele, A. Musiał, C. Schneider, M. Kamp, S. Höfling, A. Knorr, S. Reitzenstein, Phys. Rev. B 95, 035302 (2017)
Probing the carrier transfer processes in a self-assembled system with In0.3Ga0.7As/GaAs quantum dots by photoluminescence excitation spectroscopy, P. Podemski, M. Pieczarka, A. Maryński, J. Misiewicz, A. Löffler, S. Höfling, J. P. Reithmaier, S. Reitzenstein, G. Sęk, Superlattices and Microstructures 93, 214 (2016)
Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities, A. Musiał, C. Hopfmann, T. Heindel, C. Gies, M. Florian, H. A. M. Leymann, A. Foerster, C. Schneider, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, Phys. Rev. B 91, 205310 (2015)
Compensation of phonon-induced renormalization of vacuum Rabi splitting in large quantum dots: Towards temperature-stable strong coupling in the solid state with quantum dot-micropillars, C. Hopfmann, A. Musiał, M. Strauß, A. M. Barth, M. Glässl, A. Vagov, M. Strauß, C. Schneider, S. Höfling, M. Kamp, V. M. Axt, and S. Reitzenstein, Phys. Rev. B 92, 245403 (2015)
Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots, A. Musiał, P. Gold, J. Andrzejewski, A. Löffler, J. Misiewicz, S. Höfling, A. Forchel, M. Kamp, G. Sęk, S. Reitzenstein , Phys. Rev. B 90, 045430 (2014)
Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots, M. Syperek, M. Baranowski, G. Sęk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, A. Forchel , Phys. Rev. B 87, 125305 (2013)
Multiexcitonic emission from single elongated InGaAs/GaAs quantum dots, Ł. Dusanowski, G. Sęk, A. Musiał, P. Podemski, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, A. Forchel , J. Appl. Phys. 111, 063522 (2012)
University of Kassel
The group of prof. Mohamed Benyoucef – Nano Optics Group - is a part of Institute of Nanostructure Technologies and Analytics (INA) at University of Kassel. INA’s facilities comprise 400 m2 of cleanroom including a class 1 cleanroom section as well as double chamber MBE system, III-V process technology for nanostructurization and device processing including different lithographic systems (mask aligners, e-beam, nano-imprint), different etching systems (RIE, ICP-RIE) and deposition systems (evaporators, IBD and PECVD) for metal and dielectric coatings. For verifying the quality and composition of the grown material X-ray diffraction system and for nanoscale characterization: SEM, AFM and dual-beam FIB systems can be used... A major focus lies on the development of novel nanostructuring procedures, the fabrication and characterization of semiconductor nanostructures and optoelectronic as well as nano-photonic devices, which are dedicated for classical optical communication as well as for quantum information processing or communication . The group has long-standing expertise in the epitaxial growth of GaAs-based and InP-based QDs, and their morphological and spectroscopy studies. Recently the team has successfully grown symmetric high-quality InAs/InP QDs with low spatial density (in the range of 5 x 108 cm-2) making them beneficial for single QD spectroscopy and single QD-based devices. The QDs proved emission around 1.55 µm with showing sharp excitonic lines and good single-photon emission. With further growth and etching optimization, the team has also successfully fabricated high quality L3 InP-based photonic crystal microcavities embedded with InAs/InP QDs.
High‐Purity Triggered Single‐Photon Emission from Symmetric Single InAs/InP Quantum Dots around the Telecom C‐Band Window, Anna Musiał, Paweł Holewa, Paweł Wyborski, Marcin Syperek, Andrei Kors, Johann Peter Reithmaier, Grzegorz Sęk, and Mohamed Benyoucef, Adv. Quantum Technol., 3: 1900082 (2020)
Carrier transfer efficiency and its influence on emission properties of telecom wavelength InP-based quantum dot – quantum well structures, Wojciech Rudno-Rudziński, Marcin Syperek, Janusz Andrzejewski, Ernest Rogowicz, Gadi Eisenstein, Sven Bauer, Vitalii I. Sichkovskyi, Johann P. Reithmaier, and Grzegorz Sęk, Sci Rep 8, 12317 (2018)
Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μm, M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk Appl. Phys. Lett. 112, 221901 (2018)
Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system, M. Pieczarka, M. Syperek, D. Biegańska, C. Gilfert, E. M. Pavelescu, J. P. Reithmaier, J. Misiewicz, and G. Sęk, Appl. Phys. Lett. 110, 221104 (2017)
Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 µm emission,W. Rudno-Rudziński, M. Syperek, J. Andrzejewski, A. Maryński, J. Misiewicz, A. Somers, S. Höfling, J. P. Reithmaier, and G. Sęk, AIP Advances 7, 015117 (2017)
Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers, O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, Appl. Phys. Lett. 104, 121104 (2014)
High-gain wavelength-stabilized 1.55 μm InAs/InP(100) based lasers with reduced number of quantum dot active layers, V. I. Sichkovskyi, M. Waniczek, and J. P. Reithmaier, Appl. Phys. Lett. 102, 221117 (2013)
Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy, A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, Journal of Applied Physics 114, 094306 (2013)
Growth-Temperature Dependence of Wetting Layer Formation in High Density InGaAs/GaAs Quantum Dot Structures Grown by Droplet Epitax, Verena Zuerbig, Natalia Bugaew, Johann Peter Reithmaier, Michał Kozub, Anna Musiał, Grzegorz Sęk, and Jan Misiewicz, Japanese Journal of Applied Physics, 51 8R (2012)
Tunnel injection structures based on InGaAs/GaAs quantum dots: optical properties and energy structure, W. Rudno-Rudziński, J. Andrzejewski, G. Sęk, M. Syperek, J. Misiewicz, E. M. Pavelescu, C. Gilfer, and J. P. Reithmaier, Journal of Physics: Conference Series, 245 (2010)